Localized Surface Plasmon on 6H SiC with Ag Nanoparticles
نویسندگان
چکیده
منابع مشابه
Localized surface plasmon enhanced quantum efficiency of InGaN/GaN quantum wells by Ag/SiO2 nanoparticles.
Optical properties of InGaN/GaN multi-quantum-well (MQW) structures with a nanolayer of Ag/SiO2 nanoparticle (NP) on top were studied. Modeling and optical absorption (OA) measurements prove that the NPs form localized surface plasmons (LSP) structure with a broad OA band peaked near 440-460 nm and the fringe electric field extending down to about 10 nm into the GaN layer. The presence of this ...
متن کاملEpitaxial silicon oxynitride layer on a 6H-SiC(0001) surface.
Hydrogen-gas etching of a 6H-SiC(0001) surface and subsequent annealing in nitrogen atmosphere leads to the formation of a silicon oxynitride (SiON) epitaxial layer. A quantitative low-energy electron diffraction analysis revealed that the SiON layer has a hetero-double-layer structure: a silicate monolayer on a silicon nitride monolayer via Si-O-Si bridge bonds. There are no dangling bonds in ...
متن کاملLocalized Surface Plasmon Resonance Dependence on Misaligned Truncated Ag Nanoprism Dimer
Misaligned edge-to-edge dimers are the common products during the preparation of Ag nanoprism dimers using self-assembly method. However, in the self-assembly method, Ag nanoprisms are easily truncated because they are easy to oxidize in an acidic environment. In this work, modeling a truncated Ag nanoprism on a misaligned edge-to-edge dimer provides a better understanding of the effects of the...
متن کاملLocalized surface-plasmon resonances on single and coupled nanoparticles through surface integral equations for flexible surfaces.
We present an advanced numerical formulation to calculate the optical properties of 3D nanoparticles (single or coupled) of arbitrary shape and lack of symmetry. The method is based on the (formally exact) surface integral equation formulation, implemented for parametric surfaces describing particles with arbitrary shape through a unified treatment (Gielis' formula). Extinction, scattering, and...
متن کاملScreening sensitive nanosensors via the investigation of shape-dependent localized surface plasmon resonance of single Ag nanoparticles.
Understanding the localized surface plasmon resonance (LSPR) of differently shaped plasmonic nanoparticles benefits screening and designing highly sensitive single nanoparticle sensors. Herein, in the present work, we systematically investigated the shape-dependent scattering light colours and refractive index (RI) sensitivity of Ag nanoparticles (AgNPs) at the single nanoparticle level using c...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Materials Science Forum
سال: 2017
ISSN: 1662-9752
DOI: 10.4028/www.scientific.net/msf.897.634